4. Implement simple ESS and with transmitting nodes in wire-less LAN by simulation and determine the performance with respect to transmission of packets.

Create a NS simulator object set ns [new Simulator]

#setup trace support by opening file lab4.tr and call the procedure trace-all set tf [open lab4.tr w] \$ns trace-all \$tf

#create a topology object that keeps track of movements of mobile nodes #within the topological boundary.

set topo [new Topography]

\$topo load_flatgrid 1000 1000

set nf [open lab4.nam w]

\$ns namtrace-all-wireless \$nf 1000 1000

creating a wireless node you MUST first select (configure) the node #configuration parameters to "become" a wireless node.

 $node-config - adhocRouting DSDV \setminus$

-llType LL $\$

-macType Mac/802_11 \

-ifqType Queue/DropTail \

-ifqLen 50 \

-phyType Phy/WirelessPhy $\$

-channelType Channel/WirelessChannel $\$

-propType Propagation/TwoRayGround \

-antType Antenna / OmniAntenna /

-topoInstance \$topo $\$

-agentTrace ON $\$

-routerTrace ON

Create god object create-god 3

set n0 [\$ns node] set n1 [\$ns node] set n2 [\$ns node]

\$n0 label "tcp0"
\$n1 label "sink1/tcp1"
\$n2 label "sink2"

\$n0 set X_ 50 \$n0 set Y_ 50 \$n0 set Z_ 0

\$n1 set X_ 100 \$n1 set Y_ 100 \$n1 set Z_ 0

\$n2 set X_ 600 \$n2 set Y_ 600 \$n2 set Z_ 0

\$ns at 0.1 "\$n0 setdest 50 50 15" \$ns at 0.1 "\$n1 setdest 100 100 25" \$ns at 0.1 "\$n2 setdest 600 600 25" set tcp0 [new Agent/TCP]
\$ns attach-agent \$n0 \$tcp0
set ftp0 [new Application/FTP]
\$ftp0 attach-agent \$tcp0

set sink1 [new Agent/TCPSink]
\$ns attach-agent \$n1 \$sink1

\$ns connect \$tcp0 \$sink1

set tcp1 [new Agent/TCP]
\$ns attach-agent \$n1 \$tcp1
set ftp1 [new Application/FTP]
\$ftp1 attach-agent \$tcp1

set sink2 [new Agent/TCPSink]
\$ns attach-agent \$n2 \$sink2

\$ns connect \$tcp1 \$sink2

\$ns at 5 "\$ftp0 start" \$ns at 5 "\$ftp1 start"

\$ns at 100 "\$n1 setdest 550 550 15" \$ns at 190 "\$n1 setdest 70 70 15" proc finish {} {
 global ns nf tf
 \$ns flush-trace
exec nam lab4.nam &
 close \$tf
exit 0
}
\$ns at 250 "finish"
\$ns run

AWK

BEGIN{ count1=0 count2=0 pack1=0 pack2=0 time1=0 time2=0 } { if(\$1 == "r" && \$3 == "_1_" && \$4 == "AGT") { count1++ pack1=pack1+\$8 time1=\$2 } if(\$1 == "r" && \$3 == "_2_" && \$4 =="AGT") { count2++ pack2=pack2+\$8

```
time2=$2
}
END{
printf("The Throu
```

printf("The Throughput from n0 to n1: %f Mbps \n", ((count1*pack1*8)/(time1*1000000)));

```
printf("The Throughput from n1 to n2: %f Mbps \n",
((count2*pack2*8)/(time2*1000000)));
```

}

Topology:

Topology:

Output:

krishna@ubun krishna@ubun The Throughp The Throughp krishna@ubun	tu:~\$ vi tu:~\$ awk ut from n ut from n tu:~\$	lab4.awk -f lab4.a 0 to n1: 5 1 to n2: 1	wk lab4.tr 863.442245 307.611834	Mbps Mbps expl.tcl	file1.tr	file2.tr	
lab3.tcl							