
11
System Conception

System conception deals with the genesis of an application. Initially some person, who un
derstands both business needs and technology, thinks of an idea for an application. Develop
ers must then explore the idea to understand the needs and devise possible solutions. The
purpose of system conception is to defer details and understand the big picture-what need
does the proposed system meet, can it be developed at a reasonable cost, and will the demand
for the result justify the cost of building it?

This chapter introduces the automated teller machine (ATM) case study that threads
throughout the remainder of the book.

11.1 Devising a System Concept
Most ideas for new systems are extensions of existing ideas. For example, a human relations
department may have a database of employee benefit choices and require that a clerk enter
changes. An obvious extension is to allow employees to view and enter their own changes.
There are many issues to resolve (security, reliability, privacy, and so on), but the new idea
is a straightforward extension of an existing concept.

Occasionally a new system is a radical departure from the past. For example, an online
auction automates the ancient idea of buyers bidding against each other for products, but the
first online auction systems were brand new software. The concept became feasible when
several enabling technologies came into place: the Internet, widespread personal computer
access, and reliable servers. The large customer base and low unit cost due to automation
changed the nature of auctions-an online auction can sell inexpensive items and still make
a profit. In addition, online systems have made the auction process concurrent and distribut
ed.

Here are some ways to find new system concepts.
• New functionality. Add functionality to an existing system.

173



174 Chapter 11 / System Conception

• Streamlining. Remove restrictions or generalize the way a system works.
• Simplification. Let ordinary persons perform tasks previously assigned to specialists.
• Automation. Automate manual processes.
• Integration. Combine functionality from different systems.
• Analogies. Look for analogies in other problem domains and see if they have useful

ideas.
• Globalization. Travel to other countries and observe their cultural and business practic

es.

11.2 Elaborating a Concept
Most systems start as vague ideas that need more substance. A good system concept must
answer the following questions.
• Who is the application for? You should clearly understand which persons and organi

zations are stakeholders of the new system. Two of the most important kinds of stake
holders are the financial sponsors and the end users.

The financial sponsor are important because they are paying for the new system.
They expect the project to be on schedule and within budget. You should get the finan
cial sponsors to agree to some measure of success. You need to know when the system
is complete and meets their expectations.

The users are also stakeholders, but in another sense. The users will ultimately de
termine the success of the new system by an increase (or decrease) in their productivity
or effectiveness. Users can help you if they are receptive and provide critical comments.
They can improve your system by telling you what is missing and what could be im
proved. In general, users will not consider new software unless they have a compelling
interest---either personal or business. You should try to help them find a vested interest
in your project so that you can obtain their buy-in. If you cannot get their buy-in, you
should question the need for the project and reconsider doing it.

• What problems will it solve? You must clearly bound the size of the effort and estab
lish its scope. You should determine which features will be in the new system and which
will not. You must reach various kinds of users in different organizations with their own
viewpoints and political motivations. You must not only decide which features are ap
propriate, but you must also obtain the agreement of influential persons.

• Where will it be used? At this early stage, it is helpful to get a general idea of where
the new system might be used. You should determine if the new system is mission-crit
ical software for the organization, experimental software, or a new capability that you
can deploy without disrupting the workflow . You should have a rough idea about how
the new system will complement the existing systems. It is important to know if the soft
ware will be used locally or will be distributed via a network. For a commercial product,
you should characterize the customer base.



11.2 Elaborating a Concept 175

• When is it needed? Two aspects of time are important. The first is thefeasible time, the
time in which the system can be developed within the constraints of cost and available
resources. The other is the required time, when the system is needed to meet business
goals. You must make sure that the timing expectations driven by technical feasibility
are consistent with the timing the business requires. If there is a disconnect, you must
initiate a dialogue between technologists and business experts to reach a solution.

• Why is it needed? You may need to prepare a business case for the new system if some
one has not already done so. The business case contains the financial justification for
the new system, including the cost, tangible benefits, intangible benefits, risk, and alter
natives. You must be sure that you clearly understand the motivation for the new sys
tem. The business case will give you insight into what stakeholders expect, roughly in
dicate the scope, and may even provide information for seeding your models. For a com
mercial product, you should estimate the number of units that can be sold and determine
a reasonable selling price; the revenue must cover costs and a profit.

• How will it work? You should brainstorm about the feasibility of the problem. For large
systems you should consider the merits of different architectures. The purpose of this
speculation is not to choose a solution, but to increase confidence that the problem can
be solved reasonably. You might need some prototyping and experimentation.

11.2.1 TheATM CaseStudy
Figure 11.1 lists our original system concept for an Automated Teller Machine (ATM).We
ask high-level questions to elaborate the initial concept.

Developsoftwareso that customerscan accessa bank's computersand carryout theirown
financialtransactionswithoutthemediationof a bankemployee.

Figure 11.1 System concept for an automated teller machine

• Who is the application for? A number of companies provide A™products. Conse
quently, only a vendor or a large financial company could possibly justify the cost and
effort of building A™software.

A vendor would be competing for customers in an established market. A large ven
dor could certainly enter such a market, but might find it advantageous to partner with
or acquire an existing supplier. A small vendor would need some special feature to dif
ferentiate itself from the crowd and attract attention.

It is unlikely that a financial company could justify developing A™software just
for its own use, because it would probably be more expensive than purchasing a product.
If a financial company wanted special features, it could partner with a vendor. Or it
might decide to create a separate organization that would build the software, sell it to
the sponsoring company, and then market it to others.



176 Chapter 11 / System Conception

For the ATM case study, we will assume that we are a vendor building the software.
We will assume that we are developing an ordinary product, since deep complexities of
the A™problem domain are beyond the scope of this book.

• What problems will it solve? The ATM software is intended to serve both the bank and
the customer. For the bank, ATM software increases automation and reduces manual
handling of routine paperwork. For the customer, the ATM is ubiquitous and always
available, handling routine transactions whenever and wherever the customer desires.
ATM software must be easy to use and convenient so that customers will use it in pref
erence to bank tellers. Itmust be reliable and secure since it will be handling money.

• Where will it be used? ATM software has become essential to financial institutions.
Customers take it for granted that a bank will have an ATM machine. ATM machines
are available at many stores, sporting events, and other locations throughout the world.

• When is it needed? Any software development effort is a financial proposition. The in
vestment in development ultimately leads to a revenue stream. From an economic per
spective, it is desirable to minimize the investment, maximize the revenue, and realize
revenue as soon as possible. Thoughtful modeling and 00 techniques are conducive. to
this goal.

• Why is it needed? There are many reasons why a vendor might decide to build a soft
ware product. If other companies are making money with similar products, there is an
economic incentive to participate. A novel product could outflank competitors and lead
to premium pricing. Businesses commission internal efforts for technology that is diffi
cult to buy and critical to them. We have no real motivation to develop ATM software,
other than to demonstrate the techniques in this book.

• How will it work? We will adopt a three-tier architecture to separate the user interface
from programming logic, and programming logic from the database. In reality, the ar
chitecture is n-tier, because there can be any number of intermediate programming lev
els communicating with each other. We will discuss architecture further in the System
Design chapter.

11.3 Preparing a Problem Statement
Once you have fleshed out the raw idea by answering the high-level questions, you are ready
to write a requirements statement that outlines the goals and general approach of the desired
system.

Throughout development, you should distinguish among requirements, design, and im
plementation. Requirements describe how a system behaves from the user's point of view.
The system is considered as a black box-all we care about is its external behavior. For ex
ample, some requirements for a car are that when you press on the accelerator pedal, the car
goes faster, and when you step on the brake, the car slows down. Design decisions are engi
neering choices that provide the behavior specified by the requirements. For example, some
design decisions are how the internal linkages are routed, how the engine is controlled, and



11.3 Preparing a Problem Statement 177

what kinds of brake pads are on the wheels. Implementation deals with the ultimate realiza
tion in programming code.

Frequently customers mix true requirements with design decisions. Usually this is a bad
idea. If you separate requirements from design decisions, you preserve the freedom to
change a design. Typically there are many possible ways to design a system, and you should
defer a solution until you fully understand a problem.

A system concept document may include an example implementation. The purpose of
the example is to show how the system could be implemented using current technology at a
reasonable cost. It is a "proof of existence" statement. However, make it clear that the sample
implementation could be done differently in the final system. The sample implementation is
merely proposed as a possibility.

For example, when the Apollo program to put a man on the moon in the 1960s was first
proposed, the plan was to place a rocket in earth orbit, then launch a landing vehicle directly
to the moon's surface. In the final successful program, the rocket was launched directly into
a lunar orbit, from which the lander was launched to the moon's surface. Itwas not abad thing
to make the firstproposal, however, as this gave confidence that there was a feasible approach.

As Figure 11.2 shows, the problem statement should state what is to be done and not
how it is to be implemented. It should be a statement of needs, not a proposal for a system
architecture. The requestor should avoid describing system internals, as this restricts devel
opment flexibility. Performance specifications and protocols for interaction with external
systems are legitimate requirements. Software engineering standards, such as modular con
struction, design for testability, and provision for future extensions, are also proper.

Requirements Design Implementation
Statement • General approach • Platforms

• Problem scope • Algorithms • Hardware specs
• What is needed • Data structures • Software libraries
• Application context • Architecture • Interface standards
• Assumptions • Optimizations
• Performance needs • Capacity planning

Figure 11.2 Kinds of requirements. Do not make early design and implementation
decisions or you will compromise development.

A problem statement may have more or less detail. A requirement for a conventional
product, such as a payroll program or a billing system, may have considerable detail. A re
quirement for a research effort in a new area may lack details, but presumably the research
has some objective that should be clearly stated.

Most problem statements are ambiguous, incomplete, or even inconsistent. Some re
quirements are just plain wrong. Some requirements, although precisely stated, have un
pleasant consequences on the system behavior or impose unreasonable implementation
costs. Some requirements do not work out as well as the requestor thought. The problem



178 Chapter 11 / System Conception

statement is just a starting point for understanding the problem, not an immutable document.
The purpose of the subsequent analysis (next chapter) is to fully understand the problem and
its implications. There is no reason to expect that a problem statement prepared without a
full analysis will be correct.

11.3.1 The ATM Case Study
Figure 11.3 shows a problem statement for an automated teller machine (ATM) network.

Central
Computer

Figure 11.3 ATM network. The ATM case study threads throughout the
remainder of this book.

Design the software to support a computerized banking network including both human cash
iers and automatic teller machines (ATMs) to be shared by a consortium of banks. Each bank
provides its own computer to maintain its own accounts and process transactions against
them. Cashier stations are owned by individual banks and communicate directly with their
own bank's computers. Human cashiers enter account and transaction data.

Automatic teller machines communicate with a central computer that clears transac
tions with the appropriate banks. An automatic teller machine accepts a cash card, interacts
with the user, communicates with the central system to carry out the transaction, dispenses
cash, and prints receipts. The system requires appropriate recordkeeping and security provi
sions. The system must handle concurrent accesses to the same account correctly.

The banks will provide their own software for their own computers; you are to design
the software for the ATMs and the network. The cost of the shared system will be appor
tioned to the banks according to the number of customers with cash cards.

11.4 Chapter Summary
The first stage of a project is to devise a new idea. The idea can involve a new system or an
improvement to an existing system. Before investing time and money into development, it is



Exercises 179

necessary to evaluate the feasibility of the system, the difficulty and risk of developing it, the
demand for the system, and the cost-benefit ratio. This process should consider the view
points of all the stakeholders of the system and should make the trade-offs necessary to pro
vide a good chance. of success, not just technical success, but also business success. This
process usually results in some adjustments to the original idea.When the system conception
stage is complete, write a problem statement that serves as the starting point for analysis. The
problem statement need not be complete, and it will change during development, but the
writing of the statement helps to focus the attention of the project.

business case
cost-benefit trade-off
design decision
implementation constraint

problem statement
requirement
stakeholder
system conception

Figure 11.4 Key concepts for Chapter 11

Exercises
11.1 (3) Consider a new antilock braking system for crash avoidance in an automobile. Elaborate the

following high-level questions and explain your answers.
a. Who is the application for? Who are the stakeholders? Estimate how many persons in your

country are potential customers.
b. Identify three features that should be included and three features that should be omitted.
c. Identify three systems with which it must work.
d. What are two of the largest risks?

11.2 (3) Repeat Exercise 11.1 for software that supports Internet selling of books.

11.3 (3) Repeat Exercise 11.1 for software that supports the remodeling of kitchens.

11.4 (3) Repeat Exercise 11.1 for an online auction system.

11.5 (4) Prepare a problem statement, similar to that for the ATM system, for each of the following
systems. You may limit the scope of the system, but be precise and avoid making implementa
tion decisions. Use 75-150 words per specification.
a. bridge player
b. change-making machine
c. car cruise control
d. electronic typewriter
e. spelling checker
f. telephone answering machine

11.6 (3) Rephrase the following requirements to make them more precise. Remove any design deci
sions posing as requirements:
a. A system to transfer data from one computer to another over a telecommunication line. The

system should transmit data reliably over noisy channels. Data must not be lost if the receiv-



180 Chapter 11 / System Conception

ing end cannot keep up or if the line drops out. Data should be transmitted in packets, using
a master-slave protocol in which the receiving end acknowledges or negatively acknowl
edges all exchanges.

b. A system for automating the production of complex machined parts. The parts will be de
signed using a three-dimensional drafting editor that is part of the system. The system will
produce tapes that can be used by numerical control (N/C) machines to actually produce the
parts.

c. A desktop publishing system, based on a what-you-see-is-what-you-get philosophy. The
system will support text and graphics. Graphics include lines, squares, rectangles, polygons,
circles, and ellipses. Internally, a circle is represented as a special case of an ellipse and a
square as a special case of a rectangle. The system should support interactive, graphical ed
iting of documents.

d. A system for generating nonsense. The input is a sample document. The output is random
text that mimics the input text by imitating the frequencies of combinations of letters of the
input. The user specifies the order of the imitation and the length of the desired output. For
order N, every output sequence of N characters is found in the input and at approximately
the same frequency. As the order increases, the style of the output more closely matches the
input.

The system should generate its output with the following method: Select a position at ran-
dom in the document being imitated. Scan forward in the input text until a sequence of char
acters is found that exactly matches the last N - I characters of the output. Ifyou reach the
end of the input, continue scanning from the beginning. When a match is found, copy the
letter that follows the matched sequence from the input to the output. Repeat until the desired
amount of text is generated.

e. A system for distributing electronic mail over a network. Each user of the system should be
able to send mail from any computer account and receive mail on one designated account.
There should be provisions for answering or forwarding mail, as well as saving messages in
files or printing them. Also, users should be able to send messages to several other users at
once through distribution lists. Each computer on the net should hold any messages destined
for computers that are down.




